Лазерная обработка и резка металла

Сегодня мы подготовили статью на тему: "лазерная обработка и резка металла", а Анатолий Беляков подскажет вам нюансы и прокомментирует основные ошибки.

Технология лазерной резки металла – оборудование, особенности, видео

Лазерная резка, или LBC (Laser Beam Cutting), как она обозначается во всем мире, – это процесс, при котором материал в зоне реза нагревается, а затем разрушается при помощи лазера.

Изображение - Лазерная обработка и резка металла proxy?url=http%3A%2F%2Fmet-all.org%2Fwp-content%2Fuploads%2F2015%2F11%2Flaser-working-of-metall

Промышленная резка металла с помощью лазера

Лазерная резка металла, как понятно из ее названия, выполняется при помощи луча лазера, получаемого при помощи специальной установки. Свойства такого луча позволяют фокусировать его на поверхности небольшой площади, создавая при этом энергию, характеризующуюся высокой плотностью. Это приводит к тому, что любой материал начинает активно разрушаться (плавиться, сгорать, испаряться и т.д.).

Видео (кликните для воспроизведения).

Станок лазерной резки металла, к примеру, позволяет концентрировать на поверхности обрабатываемого изделия энергию, плотность которой составляет 10 8 Ватт на один квадратный сантиметр. Для того чтобы понять, как удается добиться такого эффекта, необходимо разобраться, какими свойствами обладает лазерный луч:

  • Лазерный луч, в отличие от световых волн, характеризуется постоянством длины и частоты волны (монохроматичность), что и позволяет легко фокусировать его на любой поверхности при помощи обычных оптических линз.
  • Исключительно высокая направленность лазерного луча и небольшой угол его расходимости. Благодаря такому свойству на оборудовании для лазерной резки можно получить луч, отличающийся высокой фокусировкой.
  • Лазерный луч обладает еще одним очень важным свойством – когерентностью. Это значит, что множество волновых процессов, протекающих в таком луче, полностью согласованы и находятся в резонансе друг с другом, что в разы увеличивает суммарную мощность излучения.

Процессы, происходящие при резке металла с использованием лазера, хорошо заметны на приведенных в статье видео. При воздействии луча на поверхность металла происходит быстрое нагревание и последующее расплавление подвергаемой обработке площади.

Быстрому распространению зоны плавления вглубь обрабатываемого изделия способствуют несколько факторов, в том числе и теплопроводность самого материала. Дальнейшее воздействие лазерного луча на поверхность изделия приводит к тому, что температура в зоне контакта доходит до точки кипения и обрабатываемый материал начинает испаряться.

Изображение - Лазерная обработка и резка металла proxy?url=http%3A%2F%2Fmet-all.org%2Fwp-content%2Fuploads%2F2015%2F11%2FProzess

Процесс лазерной резки в схематичной форме

Лазерную резку металла может выполняться двумя способами:

  • плавлением металла;
  • испарением обрабатываемого металла.

Для того чтобы выполнить резку металла методом испарения, требуется большая мощность оборудования и, как следствие, значительные энергозатраты, что не всегда целесообразно с экономической точки зрения. Ограничивают использование такого метода и строгие требования к толщине обрабатываемых изделий. Именно поэтому данный метод используют только для резки тонкостенных деталей.

Такая технология позволяет снизить энергозатраты, повысить скорость работы, использовать оборудование небольшой мощности для резки металла большой толщины. Конечно, это нельзя считать лазерной резкой в чистом виде, правильнее будет называть его газолазерной технологией.

Изображение - Лазерная обработка и резка металла proxy?url=http%3A%2F%2Fmet-all.org%2Fwp-content%2Fuploads%2F2015%2F11%2Frezka-metalla

Лазерная резка стали 10мм

Использование кислорода в качестве вспомогательного газа при выполнении лазерной резки позволяет одновременно решить такие важные задачи, как:

  • активизация процесса окисления металла (это позволяет снизить его отражающую способность);
  • повышение тепловой мощности в зоне реза (поскольку металл в среде кислорода горит более активно);
  • выдувание из зоны реза мелких частиц металла и продуктов сгорания кислородом, подаваемым под определенным давлением (это облегчает приток газа в зону обработки).

Лазерная резка металлических изделий имеет целый ряд весомых преимуществ по сравнению с другими способами резки. Из многочисленных достоинств данной технологии стоит обязательно отметить следующие.

  • Диапазон толщины изделий, которые можно успешно подвергать резке, достаточно широк: сталь – от 0,2 до 20 мм, медь и латунь – от 0,2 до 15 мм, сплавы на основе алюминия – от 0,2 до 20 мм, нержавеющая сталь – до 50 мм.
  • При использовании лазерных аппаратов исключается необходимость механического контакта с обрабатываемой деталью. Это позволяет обрабатывать таким методом резки легко деформирующиеся и хрупкие детали, не переживая за то, что они будут повреждены.
  • Получить при помощи лазерной резки изделие требуемой конфигурации просто, для этого достаточно загрузить в блок управления лазерного аппарата чертеж, выполненный в специальной программе. Все остальное с минимальной степенью погрешности (точность до 0,1 мм) выполнит оборудование, оснащенное компьютерной системой управления.
  • Аппараты для выполнения лазерной резки способны с большой скоростью обрабатывать тонкие листы из стали, а также изделия из твердых сплавов.
  • Лазерная резка металла способна полностью заменить дорогостоящие технологические операции литья и штамповки, что целесообразно в тех случаях, когда необходимо изготовить небольшие партии продукции.
  • Можно значительно снизить себестоимость продукции, что обеспечивается за счет более высокой скорости и производительности процесса резки, снижения объема отходов, отсутствия необходимости в дальнейшей механической обработке.

Изображение - Лазерная обработка и резка металла proxy?url=http%3A%2F%2Fmet-all.org%2Fwp-content%2Fuploads%2F2015%2F11%2FLazernaya-rezka-fanera1

Резка фанеры лазером

Наряду с высокой мощностью устройства для лазерной резки обладают исключительной универсальностью, что дает возможность решать с их помощью задачи любой степени сложности. В то же время для лазерной резки металла характерны и некоторые недостатки.

Читайте так же:  Электрический камин в гостиной
Видео (кликните для воспроизведения).
  • Из-за высокой мощности и значительного энергопотребления оборудования для лазерной резки себестоимость изделий, изготовленных с его применением, выше, чем при их производстве методом штамповки. Однако это можно отнести лишь к тем ситуациям, когда в себестоимость штампованной детали не включена стоимость изготовления технологической оснастки.
  • Существуют определенные ограничения по толщине детали, подвергаемой резке.

Оборудование для лазерной резки металла делится на три основных типа.

Газовые установки для лазерной резки

Газы в таких установках, использующиеся в качестве рабочего тела, могут прокачиваться по продольной или поперечной схеме. Принцип работы таких лазеров заключается в возбуждении атомов газа под действием электрического разряда, вследствие чего частицы начинают излучать монохроматический свет. Большое распространение в современной промышленности нашли щелевидные установки, работающие на углекислом газе. Они достаточно компактные, при этом мощные и отличаются простотой в эксплуатации (в Интернете достаточно много видео, на которых показана работа таких установок).

Изображение - Лазерная обработка и резка металла proxy?url=http%3A%2F%2Fmet-all.org%2Fwp-content%2Fuploads%2F2015%2F11%2FShema-gazovogo-lazera

Принцип действия газового лазера

Конструкция такого оборудования состоит из двух основных элементов: лампы накачки и рабочего тела, в качестве которого чаще всего используется стержень из искусственного рубина. В состав последнего также включен неодим иттриевого граната. Лампа накачки в таких аппаратах необходима для того, чтобы передать на рабочее тело требуемое излучение. Чаще всего такие установки для лазерной резки работают в импульсном режиме, но есть и модели, функционирующие непрерывно.

Изображение - Лазерная обработка и резка металла proxy?url=http%3A%2F%2Fmet-all.org%2Fwp-content%2Fuploads%2F2015%2F11%2FShema-rubinovogolazera

Принцип действия рубинового лазера

В газодинамических установках рабочий газ предварительно нагревается до 2–3 тысяч градусов, затем на высокой скорости (выше скорости звука) пропускается через специальное сопло, а после этого охлаждается. Такое оборудование является очень дорогостоящим, как и сам процесс формирования лазерного луча, поэтому его использование очень ограничено.

Если посмотреть видео работы лазерной установки, то очень сложно определить, к какой группе она относится. Для этого необходимо получить представление об устройстве такого оборудования.

Любое оборудование для выполнения лазерной резки, к какой бы группе оно ни принадлежало, содержит следующие элементы:

  • систему, отвечающую за передачу и образование газа и излучения (в состав такой системы входят сопло, устройство для подачи газа, юстировочный лазер, поворотные зеркала, оптические элементы и др.);
  • излучатель, оснащенный зеркалами резонатора, содержащий активную среду, устройства для накачки и обеспечения модуляции, если она необходима;
  • систему управления всеми параметрами работы оборудования и осуществления контроля за их соблюдением;
  • узел, обеспечивающий перемещение обрабатываемого изделия и лазерного луча.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftutsvarka.ru%2Fwp-content%2Fcache%2Fthumb%2F2460129c4_820x250

Лазерная резка и плазменная резка являются конкурирующими технологиями и имеют одинаковые сферы применения. В связи с этим многие часто задаются вопросом, какой метод лучше.

Чтобы ответить на поставленный вопрос, необходимо разобраться со всеми тонкостями и особенностями указанных видов резки.

Резка металла – ответственная задача. Очень часто данный процесс сопряжен со многими факторами, которые необходимо принимать во внимание. Это и объемы выполняемых работ, и тип металла, и его толщина.

Особенно важным показателем является количество работы. Если ее необходимо осуществлять редко, тогда плазменная резка металла – не самый выгодный вариант. Стоимость подобного аппарата не окупится при незначительном использовании и, возможно, в таком случае лучше отдать предпочтение другим методам, например, болгарке.

Иначе говоря, для того чтобы разрезать трубу на даче или для несерьезных бытовых целей предпочтительнее выглядит хорошая УШМ.

Еще одной распространенной технологией является газокислородная резка. К ее преимуществам следует отнести высокую скорость обработки. Однако к отличиям газосварки и болгарки относится черновой вариант полученного реза. Металл после воздействия данным методом необходимо дополнительно обрабатывать.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftutsvarka.ru%2Fwp-content%2Fuploads%2F2018%2F11%2Fshema-rezki-plazmoj-350x241

Если в домашних условиях на это можно потратить время, то на производстве подобная процедура потребует существенных финансовых затрат.

В плазменной резке применяется высокоскоростной поток ионизированного газа – плазмы. Она служит проводником тока между аппаратом и деталью. В результате изделие нагревается и плавится. Также в процессе работы поток газа сдувает расплавленный материал, тем самым разделяя его на части.

Из основ принципа работы метода становится понятно, что он применим для токопроводящих материалов. К таким относятся, например, алюминий, нержавейка, углеродистые стали.

В случае плазменной обработки могут использоваться различные газы. Несмотря на это, самый распространенный вариант – сжатый воздух. Данный газ доступен, а кроме того его использование не требует дополнительного применения кислорода.

Технология лазерной резки относится к передовым методам обработки металла. На данный момент она находит широкое применение в различных областях производства.

Суть метода заключается в том, что с помощью специализированного оборудования формируется лазерный луч, направляемый на обрабатываемое изделие. Площадь контакта в таком случае составляет порядка нескольких микрон.

В процессе резки металл локально нагревается до плавильных температур. В то же время остальная часть материала остается холодной за счет маленькой области контакта. В результате достигается высокая безопасность работы для персонала и самой детали.

Погрешность выполнения работы минимальна. В местах реза от лазерной сварки материал сразу испаряется. Расстояние между прибором и изделием составляет всего лишь пару сантиметров.

Читайте так же:  Как правильно скомбинировать обои на кухне варианты дизайна

Эффективность данной технологии настолько высока, что после резки нет необходимости в дополнительной обработке. Изделие можно сразу же подвергать последующим технологическим процессам или отправлять в использование.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftutsvarka.ru%2Fwp-content%2Fuploads%2F2018%2F11%2Frezka-metalla-plazmoj-350x225

Лазерная обработка позволяет резать металлические детали небольшой толщины. Это могут быть алюминий, латунь, медь, нержавейка, титан и т.д. Кроме того метод в отличие от плазменного позволяет осуществлять фрезеровку изделий, а также просверливать отверстия.

Несмотря на то, что лазерная резка металла относится к самым современным технологиям, она имеет свои положительные и отрицательные стороны.

К достоинствам можно отнести:

  • возможность обработки любых материалов, в том числе хрупких и прочных;
  • отсутствие дефектов и высокая точность реза;
  • возможность кроить изделия любой формы благодаря высокой точности;
  • экономичность в использовании расходных материалов;
  • отсутствие необходимости в дополнительной обработке изделия после резки.

К недостаткам можно отнести:

  • высокую стоимость оборудования;
  • ограничение по толщине металла в двадцать миллиметров;
  • невозможность обработки материалов с высокой отражательной способностью.

Плазменная резка и технология лазерной резки постоянно конкурируют друг с другом. При определенных условиях они могут быть взаимозаменяемыми, но есть моменты, в которых целесообразнее выбрать одну из них.

В задачах, где качество деталей имеет первоочередное значение, лазерная технология будет предпочтительней. Она позволяет получить точный перпендикулярный рез, таким образом, кромки деталей будут лучше.

Нагрев при лазерной обработке локален, в результате удается избежать деформации изделий, так как зона термического воздействия маленькая. Еще одним плюсом является точность получаемых деталей, особенно при формировании отверстий и фигур сложной конструкции.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftutsvarka.ru%2Fwp-content%2Fuploads%2F2018%2F11%2Flazernaya-rezka-350x280

Основным преимуществом данной технологии является высокая производительность. Особенно это касается работы с листовым материалом толщиной до шести миллиметров. В таком случае обеспечивается высокая скорость обработки и хорошая точность.

Лазерная обработка не оставляет на тонколистовом металле окалин или других дефектов. Это позволяет отправлять полученные детали в использование или передавать на следующие технологические этапы производства без дополнительной обработки.

Для металлов толщиной 20-40 миллиметров лазерная резка применяется редко, а при больших толщинах она не используется.

Плазменная, по сравнению с лазерной резкой, позволяет обрабатывать более широкий спектр материалов по толщине. В этом случае также обеспечивается достаточно хорошее качество работы.

Особенно эффективной такая технология оказывается в работе с медью, легированными и углеродистыми сталями, алюминием и сплавами на его основе. Следует учитывать, что этот метод имеет некоторые ограничения по толщине металлов, к которым он применим.

Плазменной резке характерна конусность поверхности реза от трех до десяти градусов. Формирование отверстий в материалах большой толщины может привести к отличию верхнего и нижнего радиусов. Так в металле толщиной 20 мм радиусы отверстий могут отличаться на 1мм.

Итак, однозначно сказать, что лучше: плазменная или лазерная резка нельзя. Как видно из приведенного выше описания, обе технологии хорошо справляются только с материалами небольшой толщины.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftutsvarka.ru%2Fwp-content%2Fuploads%2F2018%2F11%2Fshema-ustrojstva-lazera

В то же время, качество резов, полученных на тонколистовом металле с помощью лазерной резки, существенно выше. Так что в случае необходимости получения деталей сложной формы она будет предпочтительней.

Кроме того лазерное оборудование позволяет решать более широкий спектр задач. С его использованием можно выполнять разметку, маркировку, формировать отверстия и т.д. Что касается срока службы лазерных агрегатов, то они несравнимо больше, чем у плазменных.

Существенным критерием также является стоимость оборудования. Аппараты для плазменной резки стоят дешевле. Однако необходимо учитывать и другие критерии, такие как стоимость расходных материалов, а также срок службы. В итоге может получиться, что лазерное оборудование выйдет дешевле.

В итоге сравнивая все параметры, можно сделать вывод, что работать с тонкими деталями выгоднее лазерной резкой, а с более толстыми – плазменной. Расходы при эксплуатации оборудования будут зависеть от многих факторов, поэтому в каждом конкретном случае они могут существенно отличаться друг от друга.

Технологии лазерной и плазменной резки металла получили широкое распространение в современной промышленности. Они позволяют обеспечить высокую производительность, а также хорошее качество выполняемых работ.

В зависимости от поставленных целей каждая технология облает своими преимуществами, хотя во многих случаях они могут быть взаимозаменяемыми.

Изображение - Лазерная обработка и резка металла proxy?url=http%3A%2F%2Fwww.spets-stroy-portal.ru%2Fwp-content%2Fuploads%2F2018%2F03%2F1-640x440

Сейчас можно изготовить любую металлическую деталь, причем точность ее исполнения будет очень высокой. Добиться подобного результата можно только на высокотехнологичном и совершенном оборудовании, таком, как лазерные станки для резки и обработки металла.

В таких машинах всю работу выполняет лазерный луч, который фокусируется на режущей поверхности. Резка металла происходит под воздействием пучка энергии очень высокой плотности. Лазер монохроматичен (значения длины волны и частоты всегда постоянны) и когерентен (его мощность увеличивается в десятки раз по причине резонанса), поэтому, концентрируясь в одной точке, он нагревает металл до такой температуры, что в том начинает происходить процесс плавления.

Далее фаза перехода вещества из твердого состояния в жидкое доходит в толщу металла, который в определенной точке начинает закипать и испаряться. Вот так весь процесс резки и основывается либо на испарении, либо на плавлении.
Отметим, что при первом процессе необходимо большое количество энергии, что не всегда целесообразно. Кроме того, разрезать толстый лист металла испарением очень тяжело, поэтому чаще применяется плавление. Также нужно заметить, что для процесса резки необходимо применение технологического газа (В качестве которого может выступать кислород или азот).

Читайте так же:  Мебельные витражи

В последнее время все чаще в оборудовании используются волоконные лазеры, которые имеют немало преимуществ перед другими видами подобных установок. Они практически не требуют обслуживания, сам лазер находится в закрытом корпусе, поэтому туда не может попасть пыль и грязь. У этих лазерных систем большой рабочий ресурс – порядка нескольких десятков лет, а также высокое качество луча со стабильными параметрами. Эти лазеры могут свободно резать материалы с высоким коэффициентом отражения (алюминий, медь, латунь, нержавеющая сталь и другие). Такой лазер может выполнять не только резку, но и гравировку металлических деталей.

  1. Можно резать любые сплавы и металлы.
  2. Нет прямого контакта с режущим веществом, поэтому не будет механических повреждений.
  3. Резка происходит с очень большой точностью.
  4. Гравировка изделий на лазерных станках происходит очень быстро, что во много раз увеличивает производительность.
  5. На таком оборудовании можно работать без специальных пресс-форм.
  1. Для лазерных станков существует ограничение толщины обрабатываемых деталей.
  2. Нет возможности производить формовку или пуклевку, как например, на координатно-высечном прессе

Лидер по производству лазерного оборудования чешско-украинская компания «Aramis» представляет своим клиентам большой спектр станков для резки и обработки металла.

Лазерная резка металлов: описание процесса, преимущества

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftokar.guru%2Fimages%2F328273%2Flazernaya_rezka

Резка металла лазером — относительно новый метод его обработки, в настоящее время он является одним из наиболее актуальных и оптимальных. Этот процесс невероятно точный и отличается высокой технологичностью. Он гибкий и быстрый, позволяет значительно сократить затраты на материал, увеличить гибкость производства, а также получить в итоге продукцию высокого качества.

Под лазерной резкой понимается технологии раскроя и резки материалов с применением высокомощных лазеров. Чаще всего она задействуется на промышленных крупных производствах.

Лазерный луч сфокусирован, управляется чаще всего посредством компьютера. С его помощью можно обеспечить высокую концентрацию энергии и, вне зависимости от теплофизических свойств материала, разрезать практически любой материал.

Во время процесса резки металл, участок которого подвергается порезке, под воздействием лазерных лучей, начинает плавиться, возгорается, испаряется или же выдувается газовой струей. В итоге мы получаем узкие резы, причем зона термического влияния будет минимальной.

Особенности лазерной резки таковы:

  • она не оказывает механического воздействия на металл при обработке.
  • деформации, если и присутствуют, то минимальные. Они могут быть временными и возникать во время процесса, или же остаточными, появляясь при этом после полного остывания материала.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftokar.guru%2Fimages%2F328275%2Fproishodit_lazernaya_rezka

Именно по этой причине с применением этого метода резки можно выполнить обработку даже не жестких и легкодеформируемых деталей или заготовок из металла, и все будет выполнено с высокой точностью.

Лазерное излучение имеет высокую мощность, что позволяет обеспечить хорошую производительность работы, а качество поверхностей реза будет отменным.

Управление лазерным излучением относительно простое и легкое, благодаря чему можно будет выполнить резку по сложному контуру на объемных или плоских деталях или заготовках, процесс при этом будет иметь высокую степень автоматизации.

Эта методика возможна с применением технологических установок на основе таких видов лазеров:

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftokar.guru%2Fimages%2F328274%2Frezhut_metall_lazerom

Все они могут работать в импульсно-периодическом или непрерывном режиме излучения.

Использование метода лазерной резки в промышленном производстве регулярно растет, но он все равно может полноценно заменить другие традиционные способы резки металлов. По сравнению с другими промышленными установками, лазерное оборудование все еще очень дорогое, несмотря на то, что в последнее время их стоимость начала снижаться. По этой причине лазерная резка металлов эффективна лишь тогда, когда другие, более доступные традиционные методы обработки материалов, не могут обеспечить ожидаемого результата.

Эта методика выполняется посредством сквозного прожига листов металла с применением лазерных лучей. По сравнению с другими способами раскроя металлических изделий она обладает рядом таких преимуществ, некоторые из которых уже упоминались выше:

Для обработки с применением лазера подойдет сталь в любом состоянии, алюминий или его сплавы, а также прочие цветные металлы. Чаще всего применяются следующие типы металлических листов:

  • сталь (диаметр 0,2 — 20 мм);
  • нержавеющая сталь диаметром 0,2 — 12 мм;
  • сплавы алюминия от 0,2 и до 20 мм;
  • латунь (0,2 — 12 мм);
  • листы меди от 0,2 до 15 мм.

В зависимости от используемого материала в работе применяется тот или иной тип лазера. Лучше всего обработке поддаются материалы, обладающие низкой теплопроводностью, поскольку в них лазерная энергия сосредотачивается в меньшем объеме материала, и наоборот. Если металл имеет высокую теплопроводность, то может появиться грат. А еще этим методом могут обрабатываться не только металлы, но и другие материалы, в частности, дерево.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftokar.guru%2Fimages%2F328277%2Frabota_lazerom

Сам лазер, а также его оптика, включая фокусирующие линзы, требуют охлаждения. В зависимости от модели установки и ее размера, избыточное тепло может отводиться посредством воздушного обдува или теплоносителей. Часто в роли теплоносителя выступает вода, которая проходит через холодильную установку или теплообменник.
Читайте так же:  Как сделать из лоджии и балкона спальню

Что же касается потребления энергии, то эффективность лазеров, используемых в производстве, составляет 5−15 процентов. Эффективность и энергопотребление зависят от следующих факторов:

  • выходной мощности установки;
  • рабочих параметров лазера;
  • соответствия лазеру тому или иному типу работы.

Когда определяется целесообразность применения того или иного оборудования, нужно учитывать и его стоимость, а также стоимость его обслуживания и содержания. В настоящее время эксплуатационные издержки оптоволоконного оборудования составляют половину стоимости издержек углекислотного лазера.

А вот затрачиваемая мощность для осуществления резки зависит от следующих факторов:

  • скорости работы;
  • среды обработки;
  • толщины материала;
  • его типа.

Обработка металлов лазерным способом применяется в разных отраслях. Благодаря такому способу можно быстро и качественно изготовить крепежные элементы, кронштейны, корпуса разных приборов и многое другое.

Заказчиками изделий, изготовленных таким способом, являются:

  • производители складского и торгового оборудования;
  • дизайнеры интерьеров;
  • рекламные кампании и т. д.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Ftokar.guru%2Fimages%2F328280%2Fmozhno_izgotovit_lazernoy

Из металлических листов можно выкраивать даже очень сложные детали, выполнять фрезеровку, делать пазы, а также придавать срезам максимально привлекательный внешний вид.

Благодаря методу лазерной резки можно достичь идеального качества среза, производственный процесс максимально оперативен, количество расходных материалов сведено к минимуму. А еще крой деталей лазерным методом осуществляется крайне точно.

Методика практически незаменима при обработке быстро деформирующихся металлов, материалы не потребуется в дальнейшем обрабатывать, а готовые изделия можно сразу же использовать по назначению, что в некоторых отраслях имеет особое значение.

Лазерная резка приобретает все большую популярность ввиду того, что позволяет автоматизировать весь цикл обработки и получить изделие высокого качества. Технология разделки металла с помощью лазера делает возможным производство высокоточных деталей в полностью автономном режиме, исключающем ручной труд.

Лазерная резка и гравировка относятся к немеханическим способам обработки, равно как и плазменный метод. Они используют термическое воздействие, при котором сильно нагревается линия разреза, а металл плавится в нужном месте. Традиционным механическим способом обработки, в основе которого лежит разница твердости режущего инструмента и заготовки, считается алмазная резка металла. Нагрева в месте разреза не происходит. Хорошей точности и чистоты реза этот способ не дает.

Режущим инструментом в лазерной технологии является луч, который испускается с помощью специальной установки. Он фокусируется на участке с крайне небольшой площадью (не более 0,5 мм), создавая сгусток энергии высокой плотности. В точке фокусировки металл начинает достаточно быстро разрушаться (испаряться, гореть, плавиться).

Лазерному лучу помогают производить такой эффект следующие характеристики:

  1. Монохроматичность. Неизменность частоты и длины волны, позволяющая лучу при помощи простых оптических линз легко фиксироваться на любой поверхности.
  2. Направленность. Имея малый угол расходимости, луч хорошо концентрируется на нужном участке.
  3. Когерентность. Проходящие в луче волновые процессы колеблются согласованно и вызывают резонанс, который во много раз усиливает мощность излучения.

Дальнейшее воздействие вызывает испарение материала, т. к. температура в контактной зоне достигает точки кипения. Теплопроводность металла способствует перемещению пятна плавления вглубь разрезаемой заготовки.

Выделяют 2 механизма резки лазером: плавлением и испарением. Применение второго метода возможно только на тонком металле. К тому же большая мощность установки потребует соответствующих энергозатрат, что не всегда экономически оправданно. Вариант резки плавлением получил гораздо более широкое распространение, т. к. затраты энергии намного ниже. При способе обработки методом плавления используется вспомогательный газ (аргон, азот, гелий или воздух), вдуваемый в зону реза специальными установками.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Falsver.ru%2Fwp-content%2Fuploads%2F2017%2F10%2F10.v-zonu-reza-spetsialnyimi-ustanovkami

Кислород, используемый в качестве вспомогательного газа, выполняет следующие важные задачи:

  • выдувает из области резки капли расплавленного металла и отходы горения, обеспечивая поступление газа в режущую зону;
  • активизирует окислительные процессы в металле, тем самым снижая его отражающие качества;
  • при поступлении кислорода металл горит интенсивнее, дополнительно выделяющаяся теплота увеличивает лазерное воздействие.

Лазерная резка алюминия обладает некоторыми особенностями, которые обуславливаются свойствами самого металла. Работать с алюминием сложнее, чем с другими материалами. Благодаря своим оптическим и теплофизическим характеристикам металл имеет высокую отражающую способность и поглощает лазерное излучение плохо.

Для резки алюминия потребуется мощность лазерного излучения гораздо большая (в 2-3 раза), чем для разделки углеродистых сталей. Это необходимо из-за высоких коэффициентов теплопроводности, отражения излучения и температуры плавления образовавшихся тугоплавких оксидов. Приходится использовать для обработки металла оборудование, обладающее более мощной режущей способностью.

Рекомендуется разрезать металл на невысоких скоростях обработки, т. к. это позволит предотвратить образование повреждения поверхности и добиться лучшего качества работы. Резка заготовок с малыми толщинами должна производиться в импульсном режиме работы устройства, благодаря этому уменьшается область нагрева поверхности в зоне резания и снижается риск деформации детали.

С толстым металлом советуют работать в микроплазменном режиме. Плазма образуется под действием паров легко ионизируемых элементов (цинк, магний и др.), она нагревает металл до температуры плавления с минимальными энергетическими затратами.

Вспомогательным газом чаще является азот, он поступает в область резания под давлением более 10 атм. Плоскость реза имеет немного шероховатую и пористую структуру, на нижней кромке наблюдается небольшое количество легкоудаляющегося грата (излишков металла). С ростом толщины заготовки понижается качество реза. Процесс показан на видео:

Читайте так же:  Как правильно выбрать упаковочные материалы для переезда

Самой сложной признается лазерная резка нержавейки. Этот материал обладает большой стойкостью к разрушению, поэтому другим видам обработки он плохо поддается. Часто только лазерный метод бывает единственно возможным способом резки листового материала, т. к. при высоких температурах алюминий окисляется, а на поверхности образуются холодные трещины. Крайне затруднительна и неэффективна бывает механическая резка металла.

Сложности обработки материала обусловлены следующими качествами нержавеющих сталей:

  • наличие в составе большого количества легирующих присадок способно привести к зашлаковыванию поверхности реза;
  • затрудняется подвод лазерного луча к режущей зоне из-за формирования тугоплавких оксидов, вследствие чего расход энергии увеличивается;
  • для сталей высокохромистых и хромоникелевых характерна низкая текучесть, что сильно осложняет процесс резания.

При таком способе резки нержавейки применяется хорошо очищенный азот, который поступает под давлением до 20 атм. Когда резке подвергаются толстые заготовки, пятно луча заглубляется в материал для обеспечения хорошего доступа газа. При этом входное отверстие будет иметь больший диаметр, и поступление азота в область расплава возрастает.

Лазерная резка меди сильно осложняется достаточно высокой теплопроводностью металла и большим коэффициентом теплоемкости, что накладывает некоторые ограничения на применяемое оборудование. Обработка этого металла лазером должна производиться на малых скоростях с наименьшим размером пятна контакта и при больших значениях мощности излучения.

Оптимальными для резания являются медные листы не более 0,5 см толщиной. Сложный технологический процесс не позволяет нормально работать с толстыми медными заготовками. Возможно только простое раскраивание. Резка будет экономически невыгодной из-за необходимости применения оборудования чрезмерно большой мощности.

Резка с помощью лазера имеет ряд неоспоримых преимуществ при сопоставлении с другими видами обработки. Выделяют следующие положительные характеристики:

  • приемлемый диапазон обрабатываемых толщин: лазерная резка алюминия — 0,2-2 см, нержавейка — резка листов толщиной до 1,2 см, углеродистая сталь — 0,5-2 см, латунь и медь — 0,2-1,5 см;
  • ширина реза от 0,1 до 1 мм;
  • исключение непосредственного контакта режущего элемента с поверхностью обрабатываемой заготовки, что позволяет работать с хрупкими и ломкими материалами;
  • отсутствие потребности в дополнительной финишной обработке;
  • высокая производительность (особенно при сопоставлении с резкой металла кислородом);
  • простота и легкость управления оборудованием на производстве: чертеж изделия, выполненный в специальной графической программе, просто загружается в блок управления;
  • высокая скорость разделки тонколистового проката;
  • экономный расход материала за счет компактного расположения деталей на листе раскроя;
  • резка металла под углом и в различных направлениях;
  • изготовление изделий сложных форм;
  • экономически выгодное производство изделий малыми партиями, когда операции штамповки и литья нецелесообразны;
  • высокая точность разреза с ровными краями без наплывов и заусенцев, позволяющая передавать детали от места резки сразу на участок сварки металлов.

Надо отметить и отрицательные стороны резки лазером:

  • высокая стоимость;
  • низкая продуктивность при резке бронзы, алюминия, легированной стали и латуни;
  • невозможность разделывать заготовки любой толщины;
  • вследствие подкаливания материала в зоне пятна резки возможны трудности последовательного проведения лазерной резки и гибки металла.

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Falsver.ru%2Fwp-content%2Fuploads%2F2017%2F10%2F10.rezki-i-gibki-metalla

Находят применение несколько вариантов оборудования:

Изображение - Лазерная обработка и резка металла proxy?url=https%3A%2F%2Falsver.ru%2Fwp-content%2Fuploads%2F2017%2F10%2F10.napravlyat-na-gibochnyiy-uchastok

Все станки, на которых осуществляется лазерная резка и гравировка, содержат несколько необходимых компонентов:

  1. Излучатель. Порождает пучки лазерных лучей.
  2. Система перемещения лазерного излучения и система формирования луча. Перемещает лазерные пучки, формирует 1 большой луч и, пользуясь системой фокусировки, направляет в нужное место.
  3. Система образования и транспортировки газа. Готовит необходимый состав и нужное количество рабочего газа, а затем через сопло доставляет его к месту резки.
  4. Устройство координации. Перемещает в пространстве луч и обрабатываемый объект.
  5. Система автоматического управления. Проверяет и регулирует работу всего оборудования, командует координатным устройством, системой транспортировки и формирования луча и газа.

Лазерная резка алюминия производится исключительно на станках с ЧПУ, все настройки и операции происходят автоматически в соответствии с программным обеспечением. Это позволяет получить изделия лучшего качества, чем при разделке пилой, электродом или отрезным алмазным диском.

Технологические устройства для резки по металлу лазером характеризуются несколькими параметрами:

  • составом газовой струи и ее давлением;
  • типом обрабатываемого материала;
  • мощностью излучения и его интенсивностью.

Существуют специализированные станки для резки труб, а также для работ с мягкими и пластичными металлами. Технология лазерной резки приобретает все более широкое распространение, т. к. дает возможность существенно снизить трудоемкость технологического процесса и свести использование ручного труда к минимуму. Для изготовления всевозможных металлических деталей и декоративных элементов из листов материала разной толщины все чаще используется лазерная резка металла.

Изображение - Лазерная обработка и резка металла 78954663
Автор статьи: Анатолий Беляков

Добрый день. Меня зовут Анатолий. Я уже более 7 лет работаю прорабом в крупной строительной компании. Считая себя профессионалом, хочу научить всех посетителей сайта решать разнообразные вопросы. Все данные для сайта собраны и тщательно переработаны для того чтобы донести в удобном виде всю требуемую информацию. Однако чтобы применить все, описанное на сайте желательно проконсультироваться с профессионалами.

Обо мнеОбратная связь
Оцените статью:
Оценка 5 проголосовавших: 6

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here